Uniform convergence of multigrid methods for adaptive meshes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Convergence of the Multigrid V -cycle on Graded Meshes

We prove the uniform convergence of the multigrid V -cycle on graded meshes for corner-like singularities of elliptic equations on a bounded domain Ω ⊂ IR. In particular, using some weighted Sobolev space K a (Ω) and the method of subspace corrections with the elliptic projection decomposition estimate on K a (Ω), we show that the multigrid V -cycle converges uniformly for piecewise linear func...

متن کامل

Uniform Convergence Estimates for Multigrid

In this paper, we provide uniform estimates for V-cycle algorithms with one smoothing on each level. This theory is based on some elliptic regularity but does not require a smoother interaction hypothesis (sometimes referred to as a strengthened Cauchy Schwarz inequality) assumed in other theories. Thus, it is a natural extension of the full regularity V-cycle estimates provided by Braess and H...

متن کامل

Uniform convergence of the multigrid V-cycle on graded meshes for corner singularities

This paper analyzes a Multigrid V-cycle scheme for solving the discretized 2D Poisson equation with corner-singularities. Using weighted Sobolev spaces K a (Ω) and a space decomposition based on elliptic projections, we prove that the multigrid V -cycle with standard smoothers (Richardson, weighted Jacobi, Gauss-Seidel, etc.) and piecewise linear interpolation converges uniformly for the linear...

متن کامل

Optimal-order Nonnested Multigrid Methods for Solving Finite Element Equations I: on Quasi-uniform Meshes

We prove that the multigrid method works with optimal computational order even when the multiple meshes are not nested. When a coarse mesh is not a submesh of the finer one, the coarse-level correction usually does not have the a(-, •) projection property and does amplify the iterative error in some components. Nevertheless, the low-frequency components of the error can still be caught by the c...

متن کامل

Optimal-order Nonnested Multigrid Methods for Solving Finite Element Equations Ii: on Non-quasi-uniform Meshes

Nonnested multigrid methods are proved to be optimal-order solvers for finite element equations arising from elliptic problems in the presence of singularities caused by re-entrant corners and abrupt changes in the boundary conditions, where the multilevel grids are appropriately refined near singularities and are not necessarily nested. Therefore, optimal and realistic finer grids (compared wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2017

ISSN: 0168-9274

DOI: 10.1016/j.apnum.2016.11.005